
Querying the SAINTETIQ summaries
Dealing with null answers1

W. A. Voglozin, G. Raschia, L. Ughetto and N. Mouaddib
LINA-INRIA-Polytech’Nantes-Université de Nantes / ATLAS-GRIM
2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

Email:{voglozin,raschia,ughetto,mouaddib}@univ-nantes.fr

Abstract— The data summarization techniques are usually
not provided with tools for end-users to efficiently use the
produced summaries. In a previous work, a querying tool for
the SAINT ETI Q summarization model has been outlined. It takes
advantage of the hierarchical structure of those summariesto
efficiently describe tuples that satisfy some selection criteria. This
querying mechanism can be seen both as abooleanone over the
summaries, and as aflexible one over the underlying relational
tuples. This paper mainly investigates the case of null answers.
It is shown how, in this case, alternative queries with non-null
answers can be proposed to the user.

I. I NTRODUCTION

In order to handle the growth in size of databases, many ap-
proaches have been developed to extract knowledge from huge
databases. One of these approaches consists in summarizing
data (e.g., see [1], [2], [3], [4], [5]). However, summarization
techniques are usually not provided with tools for end-users to
efficiently use the summaries. As a consequence, users have
to directly interpret the summaries, which is conceivable with
a few summaries only. In other cases, tools are necessary.

In this paper, the structured data summarization model
SAINTETIQ2 developed in our research team [5] is considered.
This model provides a compact representation of a database
under the form of summaries organized in a hierarchy.

This paper proposes a querying mechanism for users to
efficiently exploit the hierarchical summaries produced by
SAINTETIQ. The first idea is to query the summaries using
the vocabulary used in the summarization process and taking
advantage of the hierarchical structure of the summaries. The
querying process answers queries in which the criteria specify
labels from the vocabulary. The algorithms perform boolean
set comparisons and use the tree structure to cut branches and
quickly reduce the search space. This leads to an important
gain in response time, especially in case of a null answer (i.e.,
of an empty result set), as only a small part of the summaries
hierarchy has to be explored, instead of the entire relational
table.

Querying the summaries as explained above is interesting
in order to rapidly get a rough idea of the properties of tuples
in a relation. But sometimes, queries may have a null answer.
Apart from the cases where null answers are unacceptable,

1This research was partially supported by the French Ministry of Research
and New Technolologies under the ACI program devoted to DataMasses
(ACI-MD), project #MD-33.

2See URL: <http://www.simulation.fr/seq>.

the user has to think about another query, which might fail
as well, and so on. Thus, the second idea is to find ways to
provide an approximate answer when the user’s query has an
empty result set.

The next section presents an overview of the SAINTETIQ
model, describing the representation of summaries and the
main steps of the summary hierarchy building process. Section
III thoroughly explains how advantage can be taken from
the use of a SAINTETIQ summaries hierarchy in a flexible
querying process. The expression of queries, the search pro-
cedure and the expression of results are briefly reviewed. Then,
Section IV describes two possibilities for electing alternative
queries for a null answer query.

II. T HE SAINT ETIQ SUMMARIES

The targeting of database records in flexible queries may
lead to important response times when a large number of
records is involved, or when subqueries are expressed. A long
wait is frustrating, particularly when the query fails.

Database summaries offer a means of significantly reducing
the volume of input for processes that require access to the
database. The response time benefits from the downsizing.
Furthermore, for this querying process, performance does not
depend on specific combinations of attributes, i.e., whether the
attributes are indexed or not, since the SAINTETIQ hierarchies
of summaries are general indexes for the underlying data [6].

When querying the summaries, the gain in response time
is made clearly at the expense of a loss of precision in the
answer. This is of no importance when only a rough answer
is required. When more details about the tuples are needed,
querying the summaries can be considered a first step only:
the entire set of relevant tuples can be easily retrieved from
the answer summaries. Then, the querying mechanism remains
efficient, and there is no loss of precision in the answer.

A. Running example

A single example illustrates the whole paper. It consid-
ers relationR = (thickness, hardness, temperature) from a
MATERIALS table. A tuple fromR describes a material used
in an imaginary metallurgy plant to produce square sheets.
Attribute thickness is expressed in mm and has a limited
range (from 0.15 to 50). Attributehardness is the final
product’s expected value on scale B of the Rockwell hardness
test. Attributetemperature is a material’s melting point.



mm320.15 3 8 16 50

1
thickness

0

thin medium thick hugesmall

−40 100 550 1000 1800 2700 3500 °C

1

0

cold moderated normal high extremelow

temperature

0

1
hardness

10 44 61 78 9527

hardsoft impenetrablecompactmalleable

Fig. 1. Linguistic variables for theMATERIALS table

The linguistic variables associated with the attributes of
R are shown on Fig. 1. Consider theMATERIALS table
composed of the 5 tuples:ta = 〈10, 38, 900〉 (copper and
zinc alloy: CuZn40),tb = 〈7.5, 40, 850〉 (copper and tin
alloy: CuSn12),tc = 〈12, 46, 896〉 (copper and arsenic alloy:
CuAs05),td = 〈10, 35, 1530〉 (iron: Fe) andte = 〈5, 35, 1453〉
(nickel: Ni). Rewriting these 5 tuples using the linguistic
variables leads to the candidate tuples shown on Fig. 2. The
generated summaries that appear in the hierarchy on Fig. 3
are described on Fig. 4.

Material Candidate tuples

UZ40 ta1
= 〈 0.7/medium, 1.0/soft, 0.85/moderated〉

CuSn12
tb1 = 〈 0.15/medium, 0.9/soft, 1.0/moderated〉
tb2 = 〈 0.45/thin, 0.9/soft, 1.0/moderated〉

CuAs05
tc1 = 〈 1.0/medium, 0.3/soft, 0.9/moderated〉
tc2 = 〈 1.0/medium, 0.5/hard, 0.9/moderated〉

Fe td1
= 〈 0.7/medium, 1.0/soft, 0.85/normal〉

Ni te1
= 〈 1.0/thin, 1.0/soft, 0.96/normal〉

Fig. 2. Translation of tuples from tableMATERIALS

B. Summaries in SAINTETIQ

The SAINTETIQ model, founded on an incremental classi-
fication algorithm [5], aims at apprehending the information
from a database in a synthetic manner. This is done through
linguistic summaries structured in a hierarchy. The hierarchy
building process consists in two steps.

First, the tuples are translated using the linguistic variables
(which are part of a background knowledge provided by the
user). Each attribute value of a tuple is rewritten using one
of the corresponding linguistic labels. The rewritten tuples are
calledcandidate tuples. As one attribute value may correspond
to more than one fuzzy label (e.g.,8 mm is described by
mediumand thin), one tuple (for instancetb andtc on Fig. 2)
may yield many candidate tuples.

z0

z1 z2

z3 z6z5 z7z4

Fig. 3. Part of the summary hierarchy forMATERIALS

Second, each candidate tuple is incorporated into a tree and
reaches a leaf node. This can be seen as a classification of the
candidate tuple. It is important to notice that the tree is modi-
fied throughout candidate tuples incorporation: it progressively
becomes a complete representation of the data. The way the
tree evolves is partially controlled by learning operators(see
[6]). These operators create and merge summaries so that the
hierarchy reflects the current set of discovered concepts.

In the hierarchy structure, a level can be associated with the
relative proportion of data that is described by a summary:
the deeper the summary in the tree (or the lower its level
in the hierarchy), the finer the granularity. Thus the lowest
level contains the most precise and specific summaries. Such
summaries are similar to candidate tuples in their intensional
expression (z = 〈α1/d1, α2/d2, . . . , αn/dn, 〉): there is only
one label per attribute (for instancez3 in Fig. 4).

By contrast, the root of the tree is the most general summary.
It covers all data. The intensional expression of non-leaf
summaries has one or more multi-valued attributes (e.g.z1 and
z2 ). These labels are all the ones in the children summaries.

Summary Intension
z3 〈 1.0/medium, 1.0/soft, 1.0/moderated〉
z4 〈 0.7/medium, 1.0/soft, 0.85/normal〉
z5 〈 0.45/thin, 0.9/soft, 1.0/moderated〉
z6 〈 1.0/medium, 0.5/hard, 0.9/moderated〉
z7 〈 1.0/thin, 1.0/soft, 0.96/normal〉

z1 〈
1.0/medium,
1.0/soft,
1.0/moderated + 0.85/normal

〉

z2 〈
1.0/thin + 1.0/medium,
1.0/soft + 0.5/hard,
1.0/moderated + 0.96/normal

〉

z0 〈
1.0/thin + 1.0/medium + 0.7/thick,
1.0/soft + 0.5/hard,
1.0/moderated + 0.96/normal + 0.75/high

〉

Fig. 4. Description of some summaries

III. D ESCRIPTION OF THE QUERYING PROCESS

The first step of a database flexible querying process that
uses soft computing consists in extending criteria [7]. Thanks
to linguistic variables defined for each attribute, criteria ex-
tension is already performed in SAINTETIQ. Then, binary
operators can be used to identify the summaries (hence, the
data) to be considered as results. This section deals with all
aspects of selection, from the expression and meaning of a
query to its matching against summaries.

A. Expression of a query

This approach to flexible querying intends to answer ques-
tions such as “what are thin materials like?” or “how are
normal-temperature and soft-hardness materials?”. In thepro-
totype developed for querying, the questions are expressedus-
ing a user-friendly interface that composes the corresponding
query in an SQL-like language. For the two previous questions,
the queries are respectively:



Q1: SELECT temperature, hardness
FROM MATERIALS
WHERE thickness IN (‘thin’)

Q2: SELECT thickness
FROM MATERIALS
WHERE temperature IN (‘normal’)
AND hardness IN (‘soft’)

Because an answer, for example “thin materials have a soft
hardness and a normal temperature”, is a description of basic
data (summaries, candidate tuples, database records), descrip-
tion is considered as an elementary operation. Embedding
the description operation (and others from summary-based
querying) in an extension of SQL is a future project.

For a more formal expression of a query, let:

• S be a set of attributes;
• R(S) be the relation whose tuples are summarized;
• Q be a query, for instanceQ1 or Q2;
• Ai be an attribute appearing in the query (Ai ∈ S);
• di,j be a label (or descriptor) of attributeAi, also appear-

ing in the query.
A question explicitly defines some values (thin, normal or
soft) called required characters. In a query, labels stand for
required characters and serve as a basis for determining what
data partake in the answer. A question also defines, sometimes
implicitly, the attributes for which required characters exist.
The set of these input attributes for a query is denoted byX .
The expected answer is a description over the other attributes,
whose set is denoted byY . Without further precision,Y is the
complement ofX relative toS: X ∪ Y = S andX ∩ Y = ∅.

Hence a query defines not only a setX of input attributes
Ai but also, for each attributeAi, the setCi of its required
characters. The set of setsCi is denoted byC, as shown in
the following example.

Example 1: Let Q1 and Q2 be the queries stated above. For
each query, the sets are:

Q1: X = {thickness},Y ={hardness, temperature},
Cthick ={thin} and C = {Cthick}

Q2: X ={hardness, temperature},Y ={thickness},
Chard ={soft}, Ctemp ={normal} and
C = {Chard, Ctemp}.

When users formulate a question, they expect data with
some characteristics to be put forward. The meaning of that
question remains an open problem. But for now, we consider
a disjunctive semantics for criteria over the same attribute and
a conjunctive semantics for criteria over different attributes.

B. Evaluation of a query

This section deals with matching one particular summary
against a query to decide whether it corresponds to that
query and can then be considered as a result. The query is
transformed into a logical propositionP used to qualify the
link between the summary and the query.P is in a conjunctive
form in which all descriptors are literals. Then, each set of
descriptors yields one corresponding clause.

Example 2: The query for “how are the materials which are
thin or medium-thickness and moderated or normal-temperature?”
is Q5: SELECT hardness WHERE thickness IN (‘medium’, ‘thin’)
AND temperature IN (‘normal’, ‘moderated’).

In Q5, X = {thickness, temperature}, Cthick = {thin,
medium} and Ctemp = {moderated,normal}. It follows that
P5 = (thin ∨medium) ∧ (moderated∨ normal).

Let v be a valuation function. It is obvious that the valuation
of P depends on the summaryz: a literald in P is positively
valuated (v(d) = TRUE) if and only if d appears inz. Thus
vz(P ) denotes the valuation ofP in the context ofz.

Let LAi
(z) be the set of descriptors that appear inz. Inter-

pretingP relatively to queryQ leads to discarding summaries
that do not satisfyP . But, as shown in the following example,
some summaries that satisfyP might not match the intended
semantics of the query.

Example 3: Fig. 5 shows the characteristics of materials (tb2 ,
tc2 , te1

) covered by summaryz2 from table on Fig. 4. Suppose
that z2 is tested for conformance with a queryQ6: SELECT
temperature WHERE thickness IN (‘medium’) AND hardness IN
(‘soft’). Then P6 = (′medium′) ∧ (′soft′), and even though
vz2

(P6) = TRUE, no material matchesQ6, as shown on Fig. 5.

Candidate thickness hardness
tb2 thin soft
tc2 medium hard
te1

thin soft
z2 {thin, medium} {soft, hard}

Fig. 5. Example of descriptor combination

The five relative situations of two sets being compared are
displayed in Fig. 6. For convenience, they are grouped in three
subfigures (a), (b) and (c). Confronting a summaryz with a
queryQ involves comparingLAi

(z) andCi for each attribute
from Q. Only three cases may occur:

• Case 1:at least one attribute falls in (a).z does not match
the semantics of the query:vz(P ) = FALSE.

• Case 2: all comparisons fall in (b).z matches the
semantics ofQ. The following expression holds:vz(P ) =
TRUE ∧ ∀i, LAi

(z) ⊆ Ci. z is considered as a result
if all attributes are one-valued (the summary is a leaf).
Otherwise, each leaf-summary in the sub-tree ofz is a
result. This condition helps avoid the mistake emphasized
in example 3.

• Case 3:at least one comparison falls in (c) and the others
fall in (b). The presence of required characters in each
attribute ofz suggests, but does not guarantee, that results
may be found in the subtree starting fromz. Exploration
of the subtree is necessary to retrieve possible results;
each branch will end up in either case 1 or case 2.

(a) (b) (c)

Ci

LAi
(z)

Fig. 6. Comparison of descriptor setsLAi
(z) and Ci



C. Selection algorithm

This section presents the algorithm that applies the matching
procedure from the previous section for a specific query. The
selection (algorithm 1), based on a depth-first search, is com-
plete thanks to a property of the hierarchy: the generalization
step in the SAINTETIQ model guarantees that any descriptor
that exists in a node of the tree also exists in each parent node.
By contrast, a descriptor is absent from a summary’s intension
if and only if it is absent from all subnodes of this summary.
This property of the hierarchy (which can be easily seen on
Fig. 4) permits branch cutting as soon as it is known that no
result will be found. In all cases, all relevant results, andonly
relevant results, are captured.

Algorithm 1 describes the exploration and selection function
with the following assumptions:

• function Explore-Selectreturns a list of summaries;
• function Corr symbolizes the matching test reported in

Section III-B;
• operator ‘+’ performs a list concatenation;
• function Add adds an element to a list;
• Lres is a local variable.

Algorithm 1 Function Explore-Select(z, Q)
Lres ← 〈〉 {the list for this subtree is empty}
if Corr(z, Q) = indecisivethen

for all child nodezchild of z do
Lres ← Lres+ Explore-Select(zchild, Q)

end for
else

if Corr(z,Q) = exact then
if z is a leaf nodethen

Add(z, Lres)
else

Lres ← Lres+ Explore-Select(zchild, Q)
end if

end if
end if
returnLres

Example 4: The result of applying the algorithm on the portion
of hierarchy in Fig. 3 for some queries is listed below:

Query Result list Tuples
Q1 〈z5, z7〉 tb2 , te1

Q2 〈z4, z7〉 td1
, te1

Q3 〈z3, z4, z5, z7〉 ta1
, tb1 , tc1 , td1

, tb2 , te1

Q4 〈〉 –
Q5 〈z3, z4, z5, z6, z7〉 ta1

, tb1 , tc1 , td1
, tb2 ,

tc2 , te1

Q6 〈z5, z7〉 tb2 , te1

D. Classification: presenting the results

The classification step is an aggregation of selected sum-
maries according to their interpretation with respect to propo-
sition P : summaries that have the same required characters on
all attributes of the input attributes setX constitute a class. A
class is equivalent to a group in an SQL SELECT ... GROUP
BY... statement except the aggregation operator is a union of

labels instead of the usual operators (COUNT, SUM, MIN,
etc.).

Example 5: Consider queryQ5 from example 2. PropositionP5

induced byQ5 (see Example 2) admits 9 different interpretations
(i.e. sets of variables valuated toTRUE so that the proposition
is satisfied) although only four interpretations are shown in the
table below. The other interpretations are {thin, medium, normal},
{thin, medium, moderated}, {thin, moderated, normal}, {thick,
moderated, normal} and {thin, medium, moderated, normal}.

However, grouping several tuples from a relationR(S) on a
subsetX of S causes different values to appear in each group for
attributes inS − X, due to the unicity of each summary. When
such values exist for a query, they are grouped in a class as shown
in the following table for the {medium, moderated} class.

Interpretation Summaries Result
{thin, moderated} z5 soft
{thin, normal} z7 soft
{medium, moderated} z3, z6 soft, hard
{medium, normal} z4 soft

Aggregation of summaries inside a class (for instance,
{medium, moderated}) is a union of descriptors: for each
attribute Ai of output setY , the querying process supplies
a set of descriptors. This set characterizes summaries that
respond to the query through the same logical interpretation
(i.e., summaries that show the same labels for input attributes).

As a response to a query, the process returns a list of
classes along with a characterization of the class for each
output attribute. The list is interpreted as follows:while search-
ing for thin or medium-thickness and normal or moderated-
temperature materials, it turned out that:

• thin moderated-temperature materials are soft;
• medium-thickness moderated-temperature materials are

either soft or hard;
• . . .

The use of classes has a few benefits: i) the results are
expressed in an intensional way ii) one can easily identify
which class accounts for an output label; and iii) it remains
possible to provide a unique list of output labels by performing
a union of labels from all classes.

IV. REPAIRING QUERIES

The intention, in an attempt to repair queries, is to offer an
answer even when no summary corresponds to the query, in
the strict sense considered so far. Repairing queries has already
been implemented in the context of a mediator by Bidault et
al. [8], [9], as one of the cooperative aspects reviewed by
Gaasterland et al. in [10].

Our view of repair consists in a modification of the original
query. This modification is performed from the optimistic idea
that there exist results semantically close to those targeted by
the user. In order to select such approximate-result summaries,
the query is modified using the parsed SAINTETIQ summaries
or pre-established information.

A. Query modification

This procedure happens each time a tree exploration that
is conducted to find answers for a queryQ fails at a specific



nodez (i.e., when some required characters are absent from
z). z is then called a failure node. As the exploration may fail
for more than one summary, several modifications of the same
query can be proposed to the user.

The first strategy consists in finding substitutes for the
missingcharacters within a limit imposed by a distance de-
scribed in Section IV-B. A substitution query denoted byQ∗,
is derived from the original queryQ. However, no guarantee
can be given as to the existence of results for the new query.
An intuitive possibility for substitutions lies in the linguistic
variables: absent descriptors are replaced by the closest ones
in a failure node. However, it requires an order over the
considered attribute domain. In case no intuitive order exists,
another possibility consists in defining a similarity relationship
matrix over the attribute domain. In this case, substitutions
may have an associated weight that would allow a finer
distinction between results from several alternative queries.

In both cases, if failure at summaryz leads to a labeld
being replaced by a labeld∗, d will not be used later as a
substitute ofd∗ at another failure point belowz (i.e., in the
subtree fromz). Indeed, ifz is a failure node, a property of the
summary hierarchy guarantees that no summary in the subtree
from z can be a result to the query.

The second strategy is guided by the summary hierarchy
and it guarantees that results will be found for the new query.
It is more flexible and more adapted to an interactive mode.

B. Distance between queries

In order to avoid a series of query modifications that would
lead to irrelevant alternative queries, a measure of distance
between queries is introduced. Only theclosest alternative
queries to the initial one are proposed to the user. Assume
that a queryQ can be associated to a bit string in which each
bit reflects the presence or the absence of a label inQ.

Definition: Let Q and Q∗ be two queries respectively
associated to bit stringsS and S∗. The distance betweenQ
andQ∗, denoted byd(Q, Q∗), is the number of 1s inS XOR
S∗. That number accounts for the modifications (insertions or
deletions of labels) that are necessary to obtainQ∗ from Q.
This Hamming distance [11] satisfies the following properties:

1) d(Q, Q) = 0
2) Q 6= Q∗ ⇒ d(Q, Q∗) > 0
3) d(Q, Q∗) = d(Q∗, Q)
4) d(Q, Q∗) <

∑
Ai∈C |DAi

| whereDAi
is the set of terms

for the linguistic variable over attributeAi.

However, this distance is not fine-grained enough to allow
an automatic process. The user may have to guide the search
because the distance does not take into account the relative
closeness between two labels. For instance, while looking for
materials with alow temperature, modified queries that target
cold or high temperature materials are considered equivalent.

C. Query substitution algorithm

This section presents the query modification procedure de-
scribed by algorithm 2. The procedure is a variant of algorithm
1 (see Section III-C) cause it adds an additional processingto

case 1 (from Section III-B). This processing is theModify
function. Usage of available information (such as linguistic
variables or a similarity matrix) is made in that function.

In this algorithm,Qref represents the original query ex-
pressed by the user. It is used in function to guarantee that
the fourth property in Section IV-B will still hold after the
modification.Q is the current query being evaluated, initially
equivalent toQref . exactstands for case 2 (from Section III-B)
and indecisivestands for case 3.

Algorithm 2 Function Explore-Select-Modify(z, Q, Qref )

Lres ← 〈〉
if Corr(z, Q) = indecisivethen

for all child nodezchild of z do
Lres ← Lres+ Explore-Select-Modify(zchild, Q)

end for
else

if Corr(z, Q) = exactthen
Add(z, Lres)

else{no correspondence, but the summary might be acceptable}
if Can-Be-Modified(Q, Qref ) = TRUE then

Q∗ = Modify(Q, z)
Lres ← Lres+ Explore-Select-Modify(z, Q∗, Qref )

end if
end if

end if
return Lres

Example 6: Consider for instance queryQ7: SELECT temper-
ature WHERE thickness IN (‘medium’) AND hardness IN (‘com-
pact’). This query fails asvz0

(P7) = FALSE and the failure
nodez0 is added to the list. Then, fromz0, two alternative queries
can be proposed :Q′

7: SELECT temperature WHERE thickness
IN (‘medium’) AND hardness IN (‘hard’)and Q′′

7 : SELECT
temperature WHERE thickness IN (‘medium’) AND hardness IN
(‘soft’), as the two labels ’hard’ and ’soft’ appear inz0. Both
alternative queries have distance 1 fromQ7, but the first one is
closer w.r.t. the similarity on hardness.

D. Summary-guided modification

Whenever a query fails, its evaluation allows to detect the
reasonsof the failure. A reason stands for an attribute, from the
query, whose criterion has not been fulfilled. The detectionis
immediate from the set-based comparison detailed in Section
III-B and illustrated by Fig. 6.

During a search to answer a queryQ0, the exploration
of a summary hierarchy may fail for each child node of a
summaryz1. However,z1 can still be considered as the best
approximation of a result toQ0 on the branch that led to
z1. Since a hierarchy exploration is made on a step-by-step
decision making process andz1 is the last point where anext
valid path had to be found, it is reasonable to assume that a
queryQ1, which hasz1 as a result, is close toQ0 provided
both queries require the same attributes. Thus, a failure node
in the summary tree yields one new alternative query.

Queries considered close toQ and derived from failure
points offer a guarantee of results, which was not the case
for Q0. Nevertheless, using algorithm 1 to implement that
proximity assumption requires two steps: i) determining that



the queryQ0 has no results and ii) searching for the failure
points in order to derive the modified queries. The new
algorithm 3 performs the two steps by assuming from the
beginning that the query being evaluated will have no result.
While exploring the tree, two lists are built, one that contains
the results toQ0 (Lres) and another one that contains failure
nodes (LQ). The latter is useful when the first is empty only.
Building the list of failure nodes is made at a low cost. It
is not penalizing when the query has answers, and avoids a
second parsing of the summaries in the other case.

E. Expression of results

Generally, the algorithm produces several alternative
queries, more or less close to the original one. These queries
can be ordered according to their closeness to the original one,
measured either by the distance in section IV-B or taking into
account the closeness of the modified labels.

The query modification procedure appears as a relaxation of
search criteria, for the new query is more general. However,
each substitution of a queryQ by a queryQ∗ is local as shown
by example 7.

The local feature of modification is justified first by the fact
that a failure occurs at a specific node in the search tree and
second, by the relatively high number of failures that naturally
occur in a efficient branch-cutting search procedure. Applying
all substitution queries over the whole tree would be not only
expensive but also unjustified for the part of the search tree
that is not concerned with a failure.

Algorithm 3 Function Guided-Sel(z, myCorr,Q)

Lres ← 〈〉
if myCorr= exactthen

Add(z, Lres)
else

if myCorr= indecisivethen
for all child nodezchild of z do

Corrf = Corr(zchild, Q)
Lres ← Lres+ Guided-Sel(zchild, Corrf , Q)

end for
if Lres = 〈〉 then

Add(zchild, LQ)
end if

end if
end if
return Lres

Example 7: Consider a hierarchy with rootz0 searched in order
to answer a queryQ0 and two failure nodesz1 andz2 are found.
As described above, two new queriesQ∗

1 andQ∗

2 are induced.
The location of the selected summaries can be categorized

depending on the query (Q0, Q∗

1,Q∗

2) they are a result of: some
are inz0’s subtree, others are inz1’s and others are inz′

2s.
Selected summaries that answerQ∗

1 belong to the subtree
starting fromz1 even though there might be answers toQ∗

1 in
the rest of the hierarchy. The same holds forQ∗

2.

For short, algorithm 3 follows these steps:

1) evaluation of the initial queryQ;
2) no result, execution of the modification;

3) determination of the best substitution queryQ∗, either
using the distance measure or interactively;

4) evaluation ofQ∗;
5) expression of results ofQ∗.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, a querying tool for the summarization model
SAINTETIQ has been proposed. It allows end-users to ef-
ficiently retrieve summaries, and exploits the hierarchical
structure of the summaries produced by SAINTETIQ.

From an algorithmic point of view, the querying process
explores a summary hierarchy. It performs a set comparison
between the summary and the query on the basis of linguistic
labels from a user-defined vocabulary. The result of the com-
parison determines whether the summary is a result but also
whether a part of the hierarchy will be explored. The search
procedure is therefore a classical boolean tree exploration with
branch-cutting algorithm whose novelty lies in the use of
summaries. The querying machinery, as well as a user-friendly
interface have been developed.

An extension to this method is also proposed. It allows to
answer queries that have empty result sets with semantically
close data. Two strategies have been considered to reach
that goal: exploiting some available information, or usingthe
summaries to determine alternatives to the original query.

This work is a step towards a more complete flexible query
answering system. Clearly, the richness of the framework is
far from being entirely exploited yet. Several future devel-
opments, such as ranking the results, introducing preferences
or priorities, or the possibility to use another vocabulary, are
under consideration. Expressiveness remains a main point for
future work. Indeed, it would be of great interest to allow
some imprecision in the user queries, and not just in the
representation of information.

REFERENCES

[1] J. C. Cubero, J. M. Medina, O. Pons, and M. A. V. Miranda, “Data
summarization in relational databases through fuzzy dependencies,”
Information Sciences, vol. 121 (3-4), pp. 233–270, 1999.

[2] D. Dubois and H. Prade, “Fuzzy sets in data summaries — outline of a
new approach,” inProc. of IPMU’2000, 2000, pp. 1035–1040.

[3] J. Kacprzyk, “Fuzzy logic for linguistic summarizationof databases,” in
Proc. of FUZZ-IEEE’99, 1999, pp. 813–818.

[4] D. H. Lee and M. H. Kim, “Database summarization using fuzzy ISA
hierarchies,” IEEE Trans. on Systems, Man and Cybernetics-Part B:
Cybernetics, vol. 27, pp. 68–78, Feb. 1997.

[5] G. Raschia and N. Mouaddib, “SAINT ETIQ: a fuzzy set-based approach
to database summarization,”Fuzzy Sets And Systems, vol. 129, pp. 137–
162, 2002.

[6] G. Raschia, “SAINT ETIQ: une approche floue pour la génération de
résumés à partir de bases de données relationnelles,” Thèsede doctorat,
Université de Nantes, Dec. 2001.

[7] H. L. Larsen, “An approach to flexible information accesssystems using
soft computing,” in Proc. of the 32nd Hawaii Int. Conf. on System
Sciences, vol. 6, Jan. 1999.

[8] A. Bidault, C. Froidevaux, and B. Safar, “Repairing queries in a mediator
approach,” inProc. of ECAI’00, 2000, pp. 406–410.

[9] ——, “Similarity between queries in a mediator,” inProc. of ECAI’02,
2002, pp. 235–239.

[10] T. Gaasterland, P. Godfrey, and J. Minker, “An overviewof cooperative
answering,”J. of Intelligent Systems, vol. 1, no. 2, pp. 123–157, 1992.

[11] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 27, no. 2, pp. 147–160, Apr. 1950.


